
c05 – Roots of One or More Transcendental Equations c05nbc

nag zero nonlin eqns (c05nbc)

1. Purpose

nag zero nonlin eqns (c05nbc) finds a solution of a system of nonlinear equations by a modification
of the Powell hybrid method.

2. Specification

#include <nag.h>
#include <nagc05.h>

void nag_zero_nonlin_eqns(Integer n, double x[], double fvec[],
void (*f)(Integer n, double x[], double fvec[],

Integer *userflag),
double xtol, NagError *fail)

3. Description

The system of equations is defined as:

fi(x1, x2, . . . , xn) = 0, for i = 1, 2, . . . , n.

nag zero nonlin eqns is based upon the MINPACK routine HYBRD1 (Moré et al (1980)). It chooses
the correction at each step as a convex combination of the Newton and scaled gradient directions.
Under reasonable conditions this guarantees global convergence for starting points far from the
solution and a fast rate of convergence. The Jacobian is updated by the rank-1 method of Broyden.
At the starting point the Jacobian is approximated by forward differences, but these are not used
again until the rank-1 method fails to produce satisfactory progress. For more details see Powell
(1970).

4. Parameters

n
Input: the number of equations, n.
Constraint: n > 0.

x[n]
Input: an initial guess at the solution vector.
Output: the final estimate of the solution vector.

fvec[n]
Output: the function values at the final point, x.

f
The function f, supplied by the user, must return the values of the fi at a point x.
The specification of f is:

void f(Integer n, double x[], double fvec[], Integer *userflag)

n
Input: the number of equations, n.

x[n]
Input: the components of the point x at which the functions must be evaluated.

fvec[n]
Output: the function values fi(x) (unless userflag is set to a negative value by
f).

userflag
Input: userflag > 0.
Output: in general, userflag should not be reset by f. If, however, the user wishes
to terminate execution (perhaps because some illegal point x has been reached),
then userflag should be set to a negative integer. This value will be returned
through fail.errnum.

[NP3275/5/pdf] 3.c05nbc.1

nag zero nonlin eqns NAG C Library Manual

xtol
Input: the accuracy in x to which the solution is required.
Suggested value: the square root of the machine precision.
Constraint: xtol ≥ 0.0.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE INT ARG LE
On entry, n must not be less than or equal to 0: n = 〈value〉.

NE REAL ARG LT
On entry, xtol must not be less than 0.0: xtol = 〈value〉.

NE ALLOC FAIL
Memory allocation failed.

NE USER STOP
User requested termination, user flag value = 〈value〉.

NE TOO MANY FUNC EVAL
There have been at least 200 ∗ (n+1) evaluations of f().

Consider restarting the calculation from the point held in x.

NE XTOL TOO SMALL
No further improvement in the solution is possible. xtol is too small: xtol = 〈value〉.

NE NO IMPROVEMENT
The iteration is not making good progress.

This failure exit may indicate that the system does not have a zero, or that the solution is
very close to the origin (see Section 6.1). Otherwise, rerunning nag zero nonlin eqns from a
different starting point may avoid the region of difficulty.

6. Further Comments

The time required by nag zero nonlin eqns to solve a given problem depends on n, the behaviour of
the functions, the accuracy requested and the starting point. The number of arithmetic operations
executed by nag zero nonlin eqns to process each call of f is about 11.5 × n2. Unless f can be
evaluated quickly, the timing of nag zero nonlin eqns will be strongly influenced by the time spent
in f.

Ideally the problem should be scaled so that at the solution the function values are of comparable
magnitude.

6.1. Accuracy

If x̂ is the true solution, nag zero nonlin eqns tries to ensure that

‖x − x̂‖ ≤ xtol × ‖x̂‖.

If this condition is satisfied with xtol = 10−k, then the larger components of x have k significant
decimal digits. There is a danger that the smaller components of x may have large relative errors,
but the fast rate of convergence of nag zero nonlin eqns usually avoids this possibility.

If xtol is less than machine precision, and the above test is satisfied with the machine precision
in place of xtol, then the routine exits with NE XTOL TOO SMALL.

Note: this convergence test is based purely on relative error, and may not indicate convergence if
the solution is very close to the origin.

The test assumes that the functions are reasonably well behaved. If this condition is not satisfied,
then nag zero nonlin eqns may incorrectly indicate convergence. The validity of the answer can be
checked, for example, by rerunning nag zero nonlin eqns with a tighter tolerance.

3.c05nbc.2 [NP3275/5/pdf]

c05 – Roots of One or More Transcendental Equations c05nbc

6.2. References

Moré J J, Garbow B S and Hillstrom K E (1980) User Guide for MINPACK-1 Argonne National
Laboratory, ANL-80-74.

Powell M J D (1970) A Hybrid Method for Nonlinear Algebraic Equations Numerical Methods for
Nonlinear Algebraic Equations P Rabinowitz (ed) Gordon and Breach.

7. See Also

nag zero nonlin eqns deriv (c05pbc)

8. Example

To determine the values x1, . . . , x9 which satisfy the tridiagonal equations:

(3− 2x1)x1 − 2x2 = −1
−xi−1 + (3− 2xi)xi − 2xi+1 = −1, i = 2, 3, . . . , 8

−x8 + (3− 2x9)x9 = −1.

8.1. Program Text

/* nag_zero_nonlin_eqns(c05nbc) Example Program.
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*
*/

#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc05.h>
#include <nagx02.h>

#ifdef NAG_PROTO
static void f(Integer n, double x[], double fvec[], Integer *userflag);
#else
static void f();
#endif

#define NMAX 9
main()
{
double x[NMAX], fvec[NMAX];
Integer i, j;
double xtol;
static NagError fail;
Integer n = NMAX;

Vprintf("c05nbc Example Program Results\n\n");
/* The following starting values provide a rough solution. */
for (j=0; j<n; j++)

x[j] = -1.0;
xtol = sqrt(X02AJC);
c05nbc(n, x, fvec, f, xtol, &fail);
if (fail.code == NE_NOERROR)

{
Vprintf("Final approximate solution\n\n");
for (j=0; j<n; j++)
Vprintf("%12.4f%s",x[j], (j%3==2 || j==n-1) ? "\n" : " ");

exit(EXIT_SUCCESS);
}

else
{
Vprintf("%s\n", fail.message);

[NP3275/5/pdf] 3.c05nbc.3

nag zero nonlin eqns NAG C Library Manual

if (fail.code == NE_TOO_MANY_FUNC_EVAL ||
fail.code == NE_XTOL_TOO_SMALL ||
fail.code == NE_NO_IMPROVEMENT)

{
Vprintf("Approximate solution\n\n");
for (i=0; i<n; i++)
Vprintf("%12.4f%s",x[i], (i%3==2 || i==n-1) ? "\n" : " ");

}
exit(EXIT_FAILURE);

}
}

#ifdef NAG_PROTO
static void f(Integer n, double x[], double fvec[], Integer *userflag)
#else

static void f(n,x,fvec,userflag)
Integer n;
double x[], fvec[];
Integer *userflag;

#endif

{
Integer k;

for (k=0; k<n; ++k)
{
fvec[k] = (3.0-x[k]*2.0)*x[k]+1.0;
if (k>0)
fvec[k] -= x[k-1];

if (k<n-1)
fvec[k] -= x[k+1]*2.0;

}
}

8.2. Program Data

None.

8.3. Program Results

c05nbc Example Program Results
Final approximate solution

-0.5707 -0.6816 -0.7017
-0.7042 -0.7014 -0.6919
-0.6658 -0.5960 -0.4164

3.c05nbc.4 [NP3275/5/pdf]

